Finite-horizon near optimal adaptive control of uncertain linear discrete-time systems
نویسندگان
چکیده
In this paper, the finite-horizon near optimal adaptive regulation of linear discrete-time systems with unknown system dynamics is presented in a forward-in-time manner by using adaptive dynamic programming and Q-learning. An adaptive estimator (AE) is introduced to relax the requirement of system dynamics, and it is tuned by using Q-learning. The time-varying solution to the Bellman equation in adaptive dynamic programming is handled by utilizing a time-dependent basis function, while the terminal constraint is incorporated as part of the update law of the AE. The Kalman gain is obtained by using the AE parameters, while the control input is calculated by using AE and the system state vector. Next, to relax the need for state availability, an adaptive observer is proposed so that the linear quadratic regulator design uses the reconstructed states and outputs. For the time-invariant linear discrete-time systems, the closed-loop dynamics becomes non-autonomous and involved but verified by using standard Lyapunov and geometric sequence theory. Effectiveness of the proposed approach is verified by using simulation results. The proposed linear quadratic regulator design for the uncertain linear system requires an initial admissible control input and yields a forward-in-time and online solution without needing value and/or policy iterations. Copyright © 2014 John Wiley & Sons, Ltd.
منابع مشابه
Optimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملA new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملProperties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems
results that include the well-known matrix equality condition [1] as a special case, still allowing arbitrary state weighting matrices. Theorem 6 and Corollary 4 are also new results that weaken the condition on the state weighting matrix. It is known that the terminal weighting matrices presented in this paper can be represented as LMI forms and computed by using existing semi-definite program...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کامل